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Abstract: The use of detector dogs has been demonstrated to be effective and safe for 
finding Mojave desert tortoises and provides certain advantages over humans in field 
surveys. Unlike humans who rely on visual cues for target identification, dogs use 
primarily olfactory cues and can therefore locate targets that are not visually obvious. One 
of the key benefits of surveying with dogs is their efficiency at covering ground and their 
ability to detect targets from long distances. Dogs may investigate potential targets using 
visual cues but confirm the presence of a target based on scent. Everything that emits odor 
does so via vapor-phase molecules and the components comprising a particular scent are 
carried primarily though bulk movement of the atmosphere. It is the ability to search for 
target odor and then go to its source that makes dogs ideal for rapid target recognition in 
the field setting. Using tortoises as targets, we quantified distances that dogs detected 
tortoise scent, followed it to source, and correctly identified tortoises as targets. Detection 
distance data were collected during experimental trials with advanced global positioning 
system (GPS) technology and then analyzed using geographic information system (GIS) 
modeling techniques. Detection distances ranged from 0.5 m to 62.8 m for tortoises on the 
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surface. We did not observe bias with tortoise size, age class, sex or the degree to which 
tortoises were handled prior to being found by the dogs. The methodology we developed to 
quantify olfaction-based detection distance using dogs can be applied to other targets that 
dogs are trained to find. 
 
Keywords: detection distance, olfaction, biosensor, dog, desert tortoise, probability of 
detection, Mojave Desert.  

 

1. Introduction  

Mojave desert tortoises (Gopherus agassizii) occur throughout the Mojave Desert; populations 
north and west of the Colorado River are listed as ‘threatened’ under the U.S. Endangered Species Act 
because they are in decline ([1], [2]). The use of dogs to survey for this rare and cryptic reptile has 
been demonstrated to be safe, effective and cost efficient [3]. Dogs were initially investigated for use 
as an alternative survey tool to humans, who are limited to visual cues for finding tortoises that spend a 
majority of their time underground in burrows [4]. The use of dogs for other wildlife detection 
applications has become more widespread as their utility is demonstrated at detecting targets that are 
difficult for humans to locate reliably ([5], [6], [7]). Dogs are used to find mammalian scat for 
population assessment and monitoring in the wild ([8], [9], [10]). Law enforcement contraband dogs 
are used to detect illegal animals and animal parts smuggled in and out of countries around the world. 
Dogs are reported in a variety of literature to be used for numerous other wildlife and biological 
detection purposes including locating bat carcasses under wind generators [11], seeking household 
mold, pests or diseases on agricultural products [12], off-flavor catfish [13], and invasive weeds [14]. 
Dogs have been shown to be able to differentiate at least 10 different compounds without degradation 
in performance and become more efficient as new target compounds are learned [15]. Just how they 
are able to do this remains unknown and thus how to optimize their performance with search and 
deployment strategies is likewise unknown.  

The vertebrate olfactory system is known to be complex but has yet to be completely described in 
terms of how odors are recognized in the brain ([16], [17]). Olfaction is an important and significant 
sense in mammals capable of precise chemosensation [16]. Artificial noses have yet to be created that 
can match the capability and field utility of an animal’s nose. Both artificial noses and dogs return 
variable responses to repeated encounter with the target stimulus [18], however dogs have the ability 
to respond to novel odor compounds, to resist damage, to go to source, to detect targets in chemically 
‘noisy’ environments and have detection thresholds not yet matched with instruments [19]. Perhaps 
most importantly, dogs can generalize; that is, they can learn to identify a discrete set of individuals 
within a target class and then detect in the field new individuals they have never before encountered. 
Search dogs trained to find missing people continually demonstrate the ability to generalize. Trained 
on a certain set of individuals, they find and alert on unfamiliar people, old and young, of different 
races and in varying states of health, even near-dead or deceased. Similarly where tortoises are the 
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target, new individual animals can be of different age, size, sex or potentially state of health and still 
be located by the dog. 

For practical field deployment to locate wildlife or wildlife sign (scat, hair, musk, etc.), the sensor 
must be able to independently seek the target odor, cover great distances, differentiate between targets 
that may be similar in odor or share common odor signature elements, lead the observer to and then 
pinpoint the source of the odor within a large unconstrained search area, identify variable levels of 
target odor, continuously learn and refine the scent search image, and locate targets that are not surface 
visible (i.e. under cover or in dens/burrows, under water, in trees, etc.). Artificial noses are not a viable 
tool for conducting wildlife searches because they cannot meet these criteria, whereas dogs do. 

1.1 Fundamentals of odor detection 

To accurately discuss the ability of dogs to detect a target (in our study a tortoise) by olfaction there 
is a necessary sequence of events that must occur. First the odor molecule(s) that dogs recognize as 
“tortoise” must evaporate. Our experience training dogs to find tortoises using gauze wiped over the 
tortoise neck and front legs suggests that whatever the dogs are using to identify the tortoise can be 
transferred to the gauze from these parts of the body [20]. An alternate source for tortoise odor could 
be from the breath, but given that dogs trained on skin transfer items can identify a live tortoise we feel 
the skin is the most likely source for the scent dogs recognize as ‘tortoise’. Once the odor molecule(s) 
evaporates it must diffuse through the boundary layer next to the tortoise’s skin and then move via 
diffusion and bulk air movement to the dog’s nose. Once there, the dog must recognize the odor and 
determine its source direction, which enables the dog to move towards the source based on increased 
concentration. The concentration of the tortoise odor at the dog’s nose will be a function of both the 
source strength (evaporation rate) and its movement and dissipation in the air. Source strength is a 
function of the vapor pressure of the compound, the ambient temperature, and is influenced by any 
binding or affinity the compounds have for the substrate they are on. We presume here that the 
compounds comprising tortoise odor are semi-volatile and in low concentration, thus the evaporation 
rate is effectively independent of the size of the tortoise since the larger surface area is not significant 
considering the low vapor pressure and low concentration of these compounds on the tortoise surfaces. 
This presumption is based on the fact that the dogs were trained on residual scent captured in gauze 
pads. If the tortoise odor molecules were not semi-volatile, the dogs would have been trained to find 
gauze and would not have recognized live tortoises. The binding or affinity between the skin or other 
surface, such as vegetation or soil, and the odor compound will be affected by ambient humidity since 
water can displace odor at binding sites. This effect has been quantified in the interaction between soil 
and applied pesticides [21] and we suspect a similar effect occurs with tortoises.  

Transport of the evaporated odor compounds in the air will be a function of the wind speed and 
direction and the roughness of the terrain. Scent movement is often described by experienced dog 
handlers as “pooling” or getting “trapped” in areas. This is a qualitative way of describing the impact 
of wind and terrain on movement of any chemical in the air under the influence of these effects. At 
higher wind speeds, scent is transported rapidly down wind, but it also moves vertically and 
perpendicular to wind direction due to turbulent air movements, thus the resulting scent concentration 
pattern is described as either a plume or cone of scent with the highest concentration at the mid-line. 
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The shape of the plume is influenced strongly by wind speed and roughness of the terrain. At the 
extreme of no wind, all movement of the compound will be by molecular diffusion and a “pool” of 
scent will form with concentric rings of decreasing concentration. Concentration is critical since it is 
clear that at some low concentration the dog is unable to detect the scent which represents a detection 
limit for the sensor.  

1.2 Sensor deployment and target detection distance 

Search strategy is the means used to maximize target detection. This concept is applied at different 
scales, for example an incident commander searching for a lost person might employ a search strategy 
that involves foot searchers, aircraft, and search dog teams. At this level the objective is to maximize 
resource allocation based on probability of area (POA), the likelihood that the target is in a defined 
region. At a micro scale, search strategy is the actual pattern a searcher uses to search a vector, such as 
a vehicle, a building, or a geographic area. Ideally search strategy is optimized to minimize time 
worked and distance covered while maximizing the number of targets found. Even with an optimized 
search strategy, target detection ultimately rests on the ability of the search tool whether human, dog, 
or synthetic sensor. Chemosensor operators also employ search strategy; it can be as simple as placing 
a sensor in a ventilation return duct to detect compounds in a room or as complex as a systematic grid 
pattern through a room or area. Search strategy has been investigated for different applications from 
theoretical [22] to animal predation and foraging [23] to sampling of rare species ([24], [25]) among 
others [26]. Olfaction-based detection distance by dogs and search strategy are interrelated but the 
relationship between the two has not been quantified. Detection distance is simply how far away a 
target is detected, independent of the sensory means employed. In the context of considering a 
detection dog to be a chemical sensor, detection distance is the point where the dog exceeded its 
minimum detection limit, since it was able at that moment to detect and identify (recognize) the target 
source. This is not necessarily the maximum detection limit for those conditions since scent pools vary 
in shape and size as described above. Therefore, detection distance varies not only with detection 
threshold of the dog, but also with the physical shape of the odor concentration distribution.  

For humans, target detection such as tortoises, scat, missing people, landmines, or buried items to 
name a few is based primarily on visual or sometimes auditory clues. Efficacy of night searching, 
searching in low light conditions, or searching in dense vegetation or other type of cover by humans is 
therefore very limited. Similarly for animals, visual detection ability is affected by the quality of the 
surrounding medium such as air or water. Visual detection distance has been investigated as a function 
of light level and turbidity in fish and related predator-prey detection of each other [27]. Such 
responses can be explored with theoretical models that describe the role of detection distance between 
predators and prey in escape behavior [28]. One study [29] evaluated the relationship between the 
distance birds detected a predator and subsequent escape behavior. In detection work, dogs acquire and 
use olfactory search images [30] and have been shown to rely primarily on olfaction to detect 
stationary and cryptic or buried objects [31]. Together, detection distance and search strategy affect the 
probability of detection (POD), which is the likelihood that a target will be located. In detection dog 
disciplines POD is reported as a percentage. For wildlife detection applications, where large areas or 
long distances are to be searched, it is important to first determine POA based on best available 
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information about the species and its habitat, and subsequently within the selected search areas 
determine a search strategy to achieve the desired POD. Although a 100% POD is always desirable, in 
the field setting it is not a realistic expectation ([20], [10]).  

Studies on the effectiveness of dogs in the field setting have returned varying results [15], but dogs 
have been shown to be quite capable of detecting targets under natural search conditions ([32], [3], 
[33]). Experimental results from data collected by dogs vary due to the quality of protocols used to 
train the dogs and the capabilities of personnel involved in the research. It is particularly challenging 
to accurately design and execute a research study where dogs are trained for olfactory investigations 
and then used to collect data. Dogs learn independently, often picking up on subtle clues from their 
handlers or observers who are unaware they are influencing the dogs’ responses [34]. Dogs are also 
exceedingly more sensitive than instrumentation, thus great care is required to prevent cross 
contamination of target and non-target material. Also as a result of the dog being more sensitive than 
instrumentation and better at detecting certain targets than humans is the fact that the dog’s correct 
response cannot always be validated by humans, either quickly if at all. Finally, researchers are 
typically not trained nor do they necessarily understand that these behavioral and physical sensitivities 
exist [35]. It is easy to inadvertently train a dog to detect an unexpected or impure source when 
attempting to train to a pure compound. This error is amplified in the field setting where the 
complexities of dog-handler dynamics, terrain, weather, ‘noisy’ odor conditions, and stress affect dog 
performance.  

Finally, the need exists to conduct studies quantifying POD for dogs searching an outdoor, natural 
environment. Search behavior in a laboratory setting has been evaluated for rats [36] and researchers at 
Sokoine University of Agriculture in conjunction with the University of Antwerp have developed grid 
search strategies for rats trained to detect buried landmines in the field setting [37]. Given that dogs 
were shown to be effective and reliable at finding Mojave desert tortoises we sought to devise a 
methodology that would capture the fine detail of a dog working to target source for the purpose of 
determining what an expected range of detection distances for Mojave desert tortoises on the 
landscape surface (as opposed to in burrows underground) might be. Ultimately this methodology and 
resulting information could be used to refine search strategy and reported POD during actual surveys 
and in other search and detection operations. 

2. Experimental Section 

The research was conducted 1-28 April 2004 at the Desert Tortoise Conservation Center near Las 
Vegas, NV, USA. All research was conducted with the appropriate permits and with permission of the 
U.S. Bureau of Land Management who manages the research facility. This study was part of a larger 
proof-of-concept study evaluating the use of dogs to find desert tortoises and a full description of the 
experimental design for the larger research project can be read in [20]. In summary, between 2 and 4 
live desert tortoises were tethered at random locations in each of 26 different survey plots of either 0.5 
ha or 2 ha in size. Two different dog teams, consisting of one dog working off-leash and one handler, 
searched the plots for tortoises. The handlers were not provided any information about the number of 
tortoises tethered or their location. When a dog found a tortoise it performed its trained alert (a ‘sit’) 
(Figure 1). Dog teams searched trial plots in a single pass with no backtracking or time limit 
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restrictions. Handlers determined their search strategy to best cover their assigned area based on wind 
conditions and terrain. These protocols were employed to simulate actual field survey conditions. 

 
Figure 1. A tortoise detection dog performs his trained alert, the 'sit', near a tortoise in 
training. The dog demonstrates his ability to perform an independent alert upon locating and 
confirming the target. 

 

 
 

 
Figure 2. Tortoise detection dogs carried GPS units that collected data in 1-s increments. The 
GPS units were placed in dog vests fitted with pockets. The data were post-processed to have 
cm-level geographic positional accuracy. 

 

 
 

Dog and handler movements were recorded using global positioning systems (GPS) in 1-second 
increments (Figure 2) and data were post processed to centimeter-level accuracy. These data allowed 
identification of the exact point at which the dog changed direction and moved directly towards a 

GPS Unit 
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tortoise. The distance between change of direction and tortoise location was the calculated detection 
distance, analyzed using the proximity point tool in ESRI ArcGIS. Each change in direction towards a 
tortoise was evaluated against recorded environmental conditions to determine if the find was likely 
based on wind-carried scent or due to visual observation by the dog. If the dog were upwind of a 
tortoise it was assumed to have seen the tortoise rather than smelled it. Four weather stations were 
evenly distributed within each plot and collected wind speed and direction and temperature data at 
approximately 0.5m off the ground; one of the four also recorded relative humidity. The weather 
station data loggers collected data in 1-second increments synchronized with the GPS units. 

3. Results and Discussion  

The dogs encountered many more tortoises than were tethered as part of the research trials because 
tortoises not involved in our study lived in the pens where our trials were conducted. While we 
quantified some of the variables that may influence target variants it is not necessary to capture all 
variants to assess detection distance. As a target, tortoises present greater variability in scent than 
single molecule target compounds such as cocaine, for example. For the detection distance calculation, 
whether or not a tortoise was in a trial was irrelevant so long as the find was verified. The total number 
of tortoises encountered by the dogs, both tethered and wild, was 184. The total number missed from 
the known placements was 8. Of these 184 encounters, we believe the dogs first detected 21 tortoises 
visually for a total data set of 163 most likely detected by olfaction. Visual detections were ascertained 
by the dog GPS track data showing direct movement to a tortoise while upwind. Of the 163 tortoise 
encounters, 99 were part of our study and were measured and sexed (‘known’). The other 64 tortoises 
were ‘wild’ and we did not take measurements of these animals. Size of the known tortoises thus 
located (n = 99) were between 89 mm and 300 mm midline carapace length (MCL; Table 1). Detection 
distances were evaluated for normality to determine whether parametric or nonparametric statistical 
tests were appropriate. The data were non-normally distributed and had positive and significant values 
of skewness (1.7552, p < 0.0001) and kurtosis (3.4910, p < 0.0001), respectively.  

Table 1. Summary statistics of detection distances for surface tortoises located using air scent 
during trials. "Known" were tortoises tethered as part of the study (n = 99). "Wild" tortoises 
were those that were located by the dogs but not placed as part of the study (n = 64). "All" 
summarizes all tortoises located by the dogs during the study (n = 163). 

 Known (m)  Wild (m) All (m)  
Minimum  0.75 0.50 0.50 
Maximum 56.01 62.82 62.82 
Mean 13.31 14.84 13.91 
Median 11.24 10.35 11.13 

 

For all tortoise encounters, detection distance ranged between 0.50 m and 62.82 m with a median of 
11.13 m (mean of 13.91 m). We found no difference in detection distances between the dogs 
(Kruskall-Wallis 1-way ANOVA; n = 163, p = 0.7594) for either type of tortoise encounter, wild or 
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known. We found no difference in detection distances by sex of the tortoise (p = 0.2862), by size class 
(p = 0.5350) or by individual tortoise (p = 0.6859). Tortoise size and age are generally positively 
related. From a deployment and sampling perspective, it is important to note that there was no sex or 
size bias in detectability of the tortoises. There did not appear to be any single tortoise that the dogs 
learned to find or had a particular attraction to over others. There was no significant relationship 
between the time of day and detection distance (r = 0.03, p = 0.7199) and detection distances in each 
trial were not significantly different (n = 163, p = 0.0157), although environmental conditions between 
trials (relative humidity, temperature, wind speed means) were significantly different. Detection times 
ranged between 0745 and 1753. The dogs were able to detect tortoises from variable distances with a 
level of equal proficiency [20] despite variable environmental conditions that are thought to affect 
scent behavior and so affect vapor transport. 

Temperatures (T) recorded during the trials ranged from 12 C – 27 C. Relative humidity (RH) 
ranged between 16% and 85%. Wind speed ranged between 0 m/s and 9 m/s. Pearson correlation 
results for detection distance and mean humidity during the trials was negative and significant (r = -
0.33, 2-tailed p < 0.0001) and was significant and positively related to both mean temperature (r = 
0.35, 2-tailed p < 0.0001) and mean wind speed (r = 0.27, 2-tailed p = 0.0005). The greater the wind 
speed, the greater the detection distance. Given our understanding of the processes necessary for a dog 
to detect tortoise odor, we know that higher temperatures will cause more evaporation and higher 
winds will transport the odor farther. This analysis is complicated by the inter-relationships among T, 
RH and wind speed. As expected, when T increased wind speeds increased and RH dropped (Table 2). 
It is likely that there was insufficient variation in climatic conditions during this study (e.g. a day with 
high RH and high temperature) to fully separate the influence of these parameters. RH is more 
challenging to interpret; since we do not know exactly what the tortoise odor compounds are we 
cannot be sure how RH influences their behavior.  

 
Table 2. Correlation coefficients for wind speed (m/s), temperature (C) and humidity. 

 
 Wind speed temperature humidity 
Wind speed 1.0000000 0.4238679 -0.4888721 
Temperature 0.4238679 1.0000000 -0.9172985 
Humidity -0.4888721 -0.9172985 1.0000000 

 
The results of the detection distance analysis showed that dogs detected surface tortoises from 

distances ≥ 60 m and ≤ 1m. Detection distance was independent of size or sex of tortoise and whether 
or not the tortoise had epoxy, glue, or a transmitter. The dogs were able to learn tortoise scent through 
extraneous anthropogenic scent and located them from long distances regardless of the tortoise’s level 
of human handling. This is an important factor because dogs would be expected to encounter tortoises 
with and without transmitters in the field during actual surveys. Based on our results there is no reason 
to expect detection distance bias in surveys using dogs from tortoises with or without hardware or 
prior human handling. Dogs can detect as well as differentiate tortoise odor from all other non-tortoise 
scent. In fact, the dogs demonstrated that they could differentiate live tortoises from scat and from 
tortoise urine, as the dogs never alerted on tortoise scat or urine during the trials. Few carcasses were 
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encountered during the study and dogs did not alert on the few encountered, nor did the dogs indicate 
falsely on other flora or fauna. 

3.1. Quantifying detection distance – a new methodology 

Both search and rescue and detection dog handlers who work dogs off-leash over large areas have 
observed and describe sudden changes in direction of the dog’s nose followed by a subsequent change 
in the dog’s direction of travel. This is believed to occur when the dog enters what could be envisioned 
as a line of detectable scent that the dog identifies as its trained target odor (Figure 3). Because this 
behavior was qualitatively described by search dog handlers but scientifically undocumented and 
because nothing was known about tortoise scent, it was unclear whether or not the methodology used 
in this study would allow us to obtain data for detection distance analyses. The use of GPS location 
data collected at the highest repeat increment possible (1-second) and the ability to differentially-
correct the data to centimeter level accuracy of both the dog movement and the tortoise location was 
imperative to achieve accurate results. Even with WAAS enabled (Wide Area Augmentation System), 
uncorrected GPS data are not accurate enough to determine precise detection distances, primarily 
because both detection distances and the moment of change in direction towards the target source 
could be within the horizontal error of the GPS unit.  

A GPS that collects real-time differentially corrected data, which downloads both the GPS signals 
and the correction factors and then applies the geometric corrections internally is ideal although post 
processing data will also provide accurate track data. At present such GPS units are costly and are 
relatively large and heavy. To prevent physical injury to the dog from wearing a GPS the unit should 
be counter-balanced. This also keeps the GPS antennae pointed upward to maximize continuity in 
satellite reception. Dogs need to be comfortable with and accustomed to working while wearing 
equipment for detection distance data to yield valid results. Desensitizing working dogs to such 
equipment is simple and does not require much time. These fine details are important to ensure that the 
dogs are working uninhibited by equipment or experiencing distress. Either of these factors may affect 
their responses and thus affect the detection distance data. 

3.2. What comprises ‘tortoise’ scent that dogs recognize? 

In this study the tortoises were targets for the detector (the dog). As a target, tortoises are inherently 
more complex and more variable than a single molecule compound. While tortoises represent a more 
variable scent than cocaine for example, for the purposes of this study we consider tortoises to be a 
single source that our detector, the dog, can identify in the natural environment. Exactly what 
constitutes ‘tortoise’ scent that the dogs cue on remains unidentified and until this is solved we will not 
be able to quantify precisely the source strength, i.e., the rate of evaporation of these compound or 
compounds from the tortoise. Trained dogs can detect tortoises in burrows ([20], [3]) which suggest 
that the detection is from vapor phase compounds that can diffuse outward; this is consistent with 
scent theory that states only vapor phase compounds can be smelled.  
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Figure 3. Handler and dog tracks and tortoise locations for one trial. The GPS captured what 
 is often called a ‘head snap’, where the dog makes a sudden sharp change in direction  
off his/her trajectory and goes directly to source. 

 
Source strength is one variable used in the field setting to predict detection distances for optimizing 

search strategy in that the stronger the source, the more vapor is available to be transported. The 
second major variable that affects detection distance is the odor transport and dispersion by air 
movement. Therefore determining a search strategy based upon predicted or expected detection 
distances directly affects a handler’s POD. Probability of detection is an important variable reported by 
dog handlers in working dog disciplines and for wildlife detection because it directly affects study and 
monitoring results. A higher POD results in a higher likelihood that all targets are found, and thus 
more samples (data) are collected; so in the case of presence/absence surveys, the POD can directly 
affect determinations about whether or not a species exists in the survey area. Reporting POD is the 
numerical equivalent of answering the question, “How confident are you that you that you found all of 
the targets”? For tortoises two studies have quantified POD (efficacy) for detection using known 
populations ([3], [20]).  

The variable detection distances measured in our study may have been affected by differing source 
strengths of individuals that were not captured in our sample size or sex categories; however, it is 
equally likely that the evaporation rate is slow enough that tortoise size has an insignificant effect. We 
compared detection distances with environmental data and concede artificially imposed limitations on 
detection distance dictated by our study plot sizes. Although we did not find a relationship between 
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detection distance and any tortoise-specific variable measured (age class, sex, size) some of the 
variability seen in our measured detection distances may be attributable to individual tortoises rather 
than environmental conditions. It would be worthwhile to conduct experimental trials to quantify 
detection distances under a greater range of environmental conditions as well as investigations into 
individual tortoise scent variability.  

3.3. Training on limited variants and generalization 

Search and detection dog handlers are keenly aware that while dogs are able to generalize from the 
few individual targets they are trained on to new and unfamiliar variants, the more target variants the 
dogs are trained on, the more unfamiliar variants they will correctly identify [19]. During this study the 
dogs were trained on, or learned through encounters in trials, tortoises that were at least 89mm in 
length, called juveniles, up to large adults. After the detection distance trials were completed, we 
conducted some additional trials that are not included in this study [38]; during these additional trials 
the dogs found five very small (30, 40, 50, 50 and 80mm) tortoises on the surface using olfaction. 
Dogs were observed to follow scent to these tiny tortoises and perform their trained alert, indicating 
they recognized the small tortoises as belonging to the general class ‘tortoise’. This is significant 
because the dogs had not been trained on tortoises this small yet they were able to correctly recognize 
them as being ‘tortoise’. We cannot say how many small tortoises (i.e. < 90mm) were present in any of 
the pens in which dogs were fielded, so we cannot say how many small tortoises the dogs missed. 
However, we can report that at a certain point (be it after a set number of encounters with reward, after 
small tortoises began to surface, or due to specific weather conditions, none of which with we can cite 
with any certainty) the dogs generalized small tortoises; this further lends evidence to our theory that 
evaporative rate of tortoise odor is effectively independent of tortoise size. 

Another important result of this work is the demonstration of dogs’ abilities to be trained on 
residual scent from a relatively small number of live tortoises kept in captivity in a highly unnatural 
environment, fed a non-natural diet and maintained in unnatural enclosures with unnatural bedding 
material – and then go on to find completely different and unrelated live tortoises maintained outdoors 
in their native habitat with minimal to no subsidy by humans. This also demonstrates the dogs’ ability 
to generalize. Each encounter with a new tortoise over the course of the research trials increased the 
dogs’ pool of variants and generalization is enhanced with exposure to more variants [19]. This finding 
lends support to the validity of collecting scent articles or training aids through residual scent transfer 
in other detection dog disciplines.  

3.4. The role of scent pool morphology in field deployment 

It is important to acknowledge scent cone or scent pool morphology in the field setting. Scent cone 
shape, size, and persistence cannot be definitively delineated although these properties can be observed 
through olfactory-behavioral responses of dogs in target odor. The detection distances calculated here 
cannot be interpreted as maximum distance of dog finds or maximum detection distance under a set of 
environmental conditions because we have no way of determining physically where in the scent cone 
the dogs hit their minimum detection threshold. They may have encountered it at the farthest 
downwind range of the cone or may have encountered it in the middle. We recommend further studies 
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with larger study sites to better understand the relationships between detection distance and the 
environmental and tortoise-related variables we measured. 

3.5. Practical applications of our results 

Although the range of environmental conditions during the trials was a subset of the broader range 
that occurs in the Mojave Desert, conditions were representative of those during which tortoises are 
active in the spring and fall ([2], [3]). It is not currently possible to extrapolate our detection distance 
results to tortoises in burrows or to small tortoises less than 100 mm MCL since we have no data 
representing either of these categories, although based on our observations from [38], scent transport 
and detectability of small tortoises on the surface should be consistent with our findings here. The 
movement of vapor from tortoise burrows into open air is unstudied and to assume that scent would be 
transported as readily or in the same manner as from surface tortoises is simply too great a leap to 
make. However, we have observed dogs perform alerts at the mouth of occupied burrows ([3], [20]) 
that suggests burrow screening by dogs is another valid and useful application. Finally, the method we 
developed was successful for determining detection distances and could be applied for other wildlife, 
wildlife sign or other targets.  

4. Conclusions 

Dogs were shown to generalize to live Mojave desert tortoises when initially trained on a discrete 
set of tortoise residual scent training aids. During the study reported here, dogs trained on adult 
tortoises went on to find new individuals not previously encountered, which is consistent with other 
dog search and detection disciplines. They also located very small tortoises suggesting that tortoise 
odor across size classes is effectively consistent in its evaporative rate, thus source strength for both 
small and large tortoises may be similar if not equal. Dogs’ abilities to find very small tortoises in 
natural settings during actual surveys remain undemonstrated and merits further study. 

Dogs detected and located tortoises at a range of distances that result from the detection threshold of 
the dog and the physical location of where the dog encountered that threshold concentration in the 
scent pool. Detection threshold of the dog is immeasurable until the molecular composition of 
‘tortoise’ scent can be described. The method we developed to measure detection distance can be 
applied for any target that can be held stationary and visually hidden. The results presented here are 
directly applicable when developing a dog search strategy in the field with respect to grid spacing and 
are applicable to expected and reported POD.  
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